Data Set Analysis: Testing Large-Scale Data Sets

Lydia Ash

Google, Inc
720 Fourth Ave, Suite 400
Kirkland, WA 98033
(425) 739-5691

ABSTRACT
Any software build using a set of data faces the problem of testing data accuracy. The problem of testing data accuracy is not unique. Any effort to engage data accuracy will encounter similar issues. While I use my experience with Google Maps (partly because of the nature of the examples, but also because of audience familiarity with the product) to illustrate the concepts in this introductory discussion, the same approaches can be used to investigate any index of data.

Statistics can become very complicated to visualize the data, and very expensive to implement. We could use these techniques (3-d graphing and statistical analysis), but they demand special knowledge and significant effort. However, if we assume that bugs occur in patterns, then we can find the simplest occurrence of a bug and extrapolate in order to identify those patterns. Can we use less effort to achieve significant impact? Are there some simple ways to approach some complex problems?

1. Approaching the Data – The Problem

In order to come upon a good solution, we must understand the problem space. This problem space is seen from the outside as Google Maps. At the heart of Google Maps is a build of data. In this case we are building the world - literally. The world contains features: countries, cities, roads, mountains, and more. Each feature possesses attributes describing its properties. For a country, attributes can include population, latitude, longitude, or total physical size. For a road, attributes can include direction of travel, maximum speed, average speed, etc. It is important to note that there are different types of data - numerical, ordinal, categorical, and some free form text values.

Data is purchased from various providers and then imported into the build set. This build of data is not static - it is ever changing. New roads are being built, more data is being purchased, and new satellite images are being added. The data is processed in batches rather than a continuous build with human intervention and filtering.

Testing a small set of data is relatively easy. Even if all other methods fail, the brute force method of code-point by code-point analysis ensures that what was put in is what comes out. However, it will not scale. For a large data set, looking at general statistics can confirm whether the feature categories that were put in are the ones that come back out, and in the correct number. This high-level approach has its own problems:

· It does not account for new data coming in to the system; and
· It does not account for refinements to existing data.
The issue becomes making sense of the tangle of data that we have.

As a final level of complexity, there is the logic to identify the driving directions. However, this is a distinct problem space and will be treated separately.

As we start to bring the problem into focus, the problem space becomes more clear and able to be grappled with. I look at this as having several levels of testing each containing many questions that must be answered.

2. Traditional Test Methods

When asked how to test Google Maps, most of the discussion turns to validating that driving directions are correct as this is seen as the dynamic portion of the application. This is actually one of the last considerations. There are entire levels of testing that must come before this.

Many initially approach the problem of testing builds of data by trying to force familiar solutions onto the problem. Traditional test methods that might be employed when testing include user scenarios or use cases. For Google Maps, there certainly are user scenarios. A user will search for a single point, or for directions from one point to a second point. However, extensive scenarios are not useful to our product. If we took this approach, we would essentially have two major use cases with a lot of different values to test. If we only tested finding directions from one US city to another, we still have more than 20,000 cities to validate. If we want to test each path between two cities, we generate 399,980,000 test cases. Even if each test case takes only one second, that is still 111,105 hours, or roughly 12.5 years, to test all city routes. Using multiple machines can bring the cost down, but we still will not have tested routes between streets, addresses, railroad stations, parks, etc, and we have only verified the United States. For this reason, any effort to identify vast numbers of test cases, or measure the test cases generated, is going to be flawed. Approaching the problem from this perspective ends up shifting the problem to one of determining which data points are interesting tests for the scenario, or in other words selecting sample data. Evaluations of business value and risk may help identify important and unimportant input data, however we have only prioritized data within the set and guaranteed that some data will always be ignored.

Identifying a test oracle, or a golden master, becomes problematic. If we possessed a set of data that was absolutely complete and known to be correct, then we would use that as our build. Even if there were a touchstone oracle, verifying every attribute on every feature would be prohibitively expensive and omits the validation of new data coming into the system.

Another traditional test method is to measure code coverage. In this case, the build of data does not have executable code, so a measure of the code executed is not applicable.
3. Assumptions – Operational QA

Operational QA validates that there are no gross production errors such as unreadable files, null files, and incorrect file attributes. We can start very roughly by identifying that the build must be larger than 1 gigabyte, and smaller than 10 petabytes. At a rough estimate, anything less than 1 gigabyte is likely incomplete and problematic and needs no further investigation in order to reject it. This is an inexpensive validation and is not likely to throw false positives, although the value of this check can be argued.
4. Tier 1 – Is the data good?

Conflation is the process of combining data from different sources and identifying variation between them. In the case of maps, one data provider may provide a data set with highly detailed boundary data for counties and have poor information about the features in the counties, while another provider’s set has detailed information about the features contained in the counties but poor boundary geometry. These two data streams are combined to provide a data set that is superior to either of them. Similarly, we may need to augment data currently in the build with a data set from a new provider. Conflation is the process of combining the data and deciding which data to incorporate. During this process some data is kept and some data is thrown away. This process is integral to any build of data, and therefore warrants some focus from a quality perspective.
We can start to engage the quality of our conflation process by asking a few questions - Do we make good decisions about what data to keep? Some data will not be incorporated. We should know how much data we are choosing to leave behind, and its ratio to the data that is kept. This also allows us to track whether particular data providers always have their data discarded – knowledge that can then guide business decisions for data provider selection.
Besides judging the mass of the data left behind, we should be able to judge the quality of the data dropped - Did we drop correct data or unique data? If our conflation process is working properly, the following will be true:

· Data dropped and marked as duplicate will be identical to data retained;
· Data dropped as incorrect will be different from data that is kept.
The second is the more difficult to evaluate as it matters which copy of the data is retained - one copy is incorrect. This will need to be evaluated at a more sophisticated level later. What might be found over time is that one data provider has unique data or that data from one provider is consistently incorrect.

A cursory glance shows that features are organized into categories. There are features which are of type country and features of type road. We care about the data categories we have - Do we have the correct categories of features? Answering this question requires a golden master list of categories. We can triangulate the data verification against a few sources.
· Previous builds. However, if this is the first build of the data, then we cannot compare against a previous build.

· Data sources. To find out if we have all the feature categories we should, we can check against input from data providers. Multiple data providers create several signals and higher confidence.
· Raw data

· Summary data

Evaluating against the raw data, the intermediate results, and the summary data will allow us to evaluate the build pipeline as a process as well as the product of the pipeline. The evaluation process checks for:

· Consistency over time
· Consistency within a data set
· Consistency between data sets1
We also know something about some of the feature types. There are not too many features of type country and they do not change frequently - Are all the countries present in the build of data? We can have a static list of the country features we expect to have in each build and verify this for every build of the data without expending too much effort. (Indeed, we can even automatically verify the attributes on these few features for every build with an acceptable cost.) The solution to this problem is to narrow the problem surface to a small data set, then validate each item in that set. Several problems can be solved with this approach; however it incurs the cost of having to evaluate each and every feature. This cost means that this technique should be applied sparingly, but its appropriate use can very quickly identify root problem causes.

Another aspect is to evaluate if the attribute values are correct - Is Spokane in the correct location? Here we are evaluating the attributes of a feature and the costs to perform this evaluation will increase sharply. Features and attributes will have to be prioritized for this level of validation, and the system itself will need to be monitored as to if this is an important validation for the cost. Important evaluators include the frequency that attributes are changed, variability between data providers (indicating error, fluctuation, and uncertainty as well as an increased potential for conflation to a different value at some point). Some data might be identified as particularly important to users, such as airports.

We also need to do an overall tier evaluation by monitoring the amount of flagged data. If this has significantly increased, manual investigations will be required.

5. Tier 2 - Is today’s build as good as yesterday’s?

Because the world changes and the data known about it increases, today’s build will not be entirely the same as yesterday’s. Roads are built, new addresses are added, and our new set of data should have some differences from the previous set. Some data should not change. The size of the Atlantic Ocean should stay constant, and regions in open ocean should not gain railroad stations. From the human perspective, many changes can be quickly rationalized or flagged. However, many things that are obvious to humans are notoriously difficult to have a machine identify.
We need to determine if the current build is as good as the previous build - Do we have the same number of railroad stations that we had in the last build? Even a cursory look at this will reveal gross errors and will not be expensive. We can evaluate if today's build of data meets the same expectations as yesterday's build. One way to deal with this automatically is to arbitrarily select a threshold of acceptable change and monitor that fluctuations are within that expected threshold. For example, we can set a rule that the amount of highways added is <1% increase. The number of roads destroyed is likely to be relatively small, so we would not set a lower tolerance for the data, but the upper bound will be useful in detecting potential data errors. This approach is inexpensive, but also prone to errors. An arbitrary threshold may be too restrictive or ineffective so must be selected intelligently.

If we allow a net growth of 1% but build our data on a daily basis, we could conceivably have incorrectly doubled the number of roads within a number of builds. Trend analysis over time can be useful to address this. If we determine over time that certain feature types have a particular historical growth rate, we can then set a predictive value on expected future growth rate. The growth rate for feature type continent should be 0. The growth rate for feature type gondola lift station will probably increase, although not at a fast rate. The growth rate for feature type road will likely increase, and comparatively rapidly.

A threshold applied in this manner identifies only net changes, and as a result the number of railroad stations in the build for the Britain tile could have doubled (incorrectly) at the same time that all the railroad stations for the United States were lost (incorrectly). The net change is then below our threshold of tolerance and the build error would go unnoticed. Breaking the world into regions can provide an additional layer of quality.2 In the previous examples we have treated the entire world as one build of data. It can be reasonably assumed that more railroad stations would be added in some areas than others, or more roads would be built in some areas than in others. Over time we can classify certain regions as high change regions and assign a higher tolerance. New roads would be expected in upstate New York, but less likely in Kremmling, CO. Trend analysis enables us to make small predictions to set the next threshold. Comparing data trends over time allows us to check on total growth. Each regional breakdown will have the net effect of reducing the potential for net changes (dropped data equaling gained data), however each regional unit is quite sensitive to any changes within the region (one city could add multiple railroad stations in a short time span and set off alarms when the data is checked). Feature density within each region can be a metric for analysis. Breaking the world down by regions then evaluating the features and changes within those regions is a superior method of evaluating data builds, but it will incur a cost for managing these regions.
Simple counts will achieve a level of certainty, but comparisons are also going to be useful - What is the ratio of highways to surface streets? Some simple comparisons of the ratios of our features can turn up errors. While it is likely that one feature set contains errors, it is unlikely that the errors in another feature set will occur in the same ratio without full multiples of data. Taking two measurements, a count of the raw number of a particular feature and a comparison of the ratio against another feature, will provide safeguards against multiple types of errors.
6. Tier 3 – What is the relationship between the data points?

At this tier we are finally starting to look at the pathing algorithm. How does one data point relate to another data point? This is the fundamental question that this level of analysis is considering. In the case of Google Maps, the relationship between two points is identified as the path of driving directions. From a traditional approach to testing, we would take all possible end points, categorize them, prioritize them, and request routes between them. As a total of the whole, we would only be able to actually test a very small percentage of the possible end points. We will still need to do some of this for basic acceptance tests that the relationship (pathing algorithm) is correct, but we can also do some other analysis.

One relationship failure is not finding directions between two points - Do we have failed routes for successful geocodes? In this case each end point will have been successfully geocoded, but no route could be found between them. In other words, each end point was located, but no relationship between the two end points could be identified. Pre-launch we can identify locations of interest to try as these end points. Post-launch our users can identify the data to be entered, and even perform the data entry for us. The results of the tests can be found in the logs. We can then identify patterns and address the relationship algorithms or data parsing rapidly from effective monitoring.

We can also consider aspects of a route - Does the route from Seattle to Spokane direct me through Los Angeles? We want to ensure our routes are identifying the appropriate relationship between two points. There are several levels to this analysis. We can set an arbitrary threshold to flag potentially problematic routes. Each end point has a latitude and longitude value. Each path returned to a user has a total distance. It is rather trivial to compute the straight line distance between two points and compare this to the route path distance. Of course the route path will be some factor longer than the straight-line distance. We can start by arbitrarily picking a threshold starting with a large multiplying factor such as 3. Since we are dealing with a large volume of data a good approach is to start broad and then narrow down to a scale that can be addressed. When we have a set of routes with a path three times longer than the straight line distance, we can identify problematic routes, and from there problematic patterns. Some long routes are valid requiring navigation around natural features such as bodies of water or mountains. Other routes are faulty. When the arbitrary threshold no longer returns enough faulty paths to make it a good indicator of problems, we can use more sophisticated methods to identify problematic routes.

Using the technique of breaking the world space into regions allows us to break the problem down. If both endpoints are contained in the same region, then any path that passes through a second region should be flagged. If two regions are adjoining, then our path is not likely to pass through a third region. These are inexpensive ways to identify potentially problematic patterns, and can be coupled with other region techniques. We will likely flag some valid routes with any criteria. If our route analysis algorithm went so far as to duplicate the routing algorithm we would still end up with false positives, and with a much higher cost to implement the analysis, so a balance must be struck. If our logic can identify enough actual failures in relation to the false positives, then the inexpensive solution can be highly effective.

Another simple heuristic we can use is to look at the total number of steps - Is the path reasonable? Using the same threshold technique, any route with more than 100 steps can be flagged for investigation. As it turns out, in North America very few routes have this many steps, and so the threshold can be dropped to a lower number such as 70. In Europe many routes are returned with 100 steps. Manual evaluation of these has shown many to be valid, if slightly less than optimal.

The relationship of interest may not be between the two endpoints, but rather between the intermediary segments. We can logically evaluate that no ferry segment should directly connect with another ferry segment - there should always be an intermediate step of departing the ferry or continuing on the same ferry. However, when two ferry lines intersect, we can end up with problematic assumptions about their relationship. We can evaluate this by treating all ferry segments as special, flagging all routes returned involving more than one ferry, and performing additional analysis on those routes.
7. Tier 4 – Is the route human consumable?

Identifying what makes directions difficult to consume is hard until we evaluate the directions relayed to the user to describe the route - Does the route make sense? This is as much about the path determined as about the description of the route. In the previous evaluation phases, we have noticed that some directions, while correct, have aspects that make them difficult to consume. For example, I may be driving down an interstate labeled multiple names. As long as my route continues along the same roadway, I don't need to know about the many roads merging and splitting. In fact, those directions can often confuse drivers. The directions can result in multiple "stay on I-97" instructions. In order to identify routes that fall into this category, we can flag all routes with repeated steps.

Some directions, while technically correct, may not make much sense to include. A direction such as "go forward 1 foot" is going to be ignored by a human and merged into the previous or following step. Small distances such as this may end up confusing a user. Such small distances can easily be caught by flagging all routes with any step that is less than 20 feet and analyzing them.
8. Conclusions

Errors and failures are expensive. Each check and verification I have described incurs a cost. The cost comes at the time the check is made in the build batch process, at user runtime, or in logs analysis, and it is additive: processing the error is a cost on top of performing the computation. Reviewing errors carries a cost. We do not want to carry forward errors and accumulate them. We must constantly improve the signal-to-noise ratio quickly to avoid merely accumulating these errors. Reliability is important, not just to the users who want driving directions, but also to the engineers who need a clean build, fast, with the correct data to work with.

To correct the failures, we need to understand them, where they came from, and what caused them. Can we get the system to take action when confronted with errors? If a significant number of errors is seen, we can have the system evaluate the data. We can take the error data, evaluate the attributes and evaluate what they have in common. Are they all military airports? Are they all located in Australia? Do they all come from the same data provider? Are they all missing the same required property?

We also want to separate logical violations from deviations from a norm
. It would be a violation of logic to have a road with a level grade and an altitude change, but to gain 100 railway stations in Seattle would be a deviation from a norm. Separating the illogical from the unusual can also help identify the origin of the error. If enough errors are seen, the system can respond by recollecting the data
, or by comparing it against another source. One of the sources can be the data dropped in conflation. This would also provide a new signal as to the quality of our conflation logic.

There is an exquisite beauty in simple solutions to complex problems. In order to start finding these, we have to understand the problem space and approach it effectively. Any of the techniques described here appear very simple, and therein lies the power – these are very simple ways to effectively approach very complex problems. What is described is an abstract view of the problem space, a beginning. For more impact, more complex approaches are employed. Any problem space that encompasses large sets of data can begin to be approached in this way. Each of these questions discussed above can be asked of any set of data and used to evaluate and improve an index of data.
9. ACKNOWLEDGMENTS

I would like to thank and recognize Google Software Engineers in Test Jamie Zyskowski and Ed McKenzie for the tools they developed and work that made results attainable. Additional recognition must go to NASA engineers Dr. Christopher Lynnes and Dr. Gregory Leptoukh for their consultation and advice. Appreciation goes to Google researcher Dr. Peter Norvig for his review.

10. REFERENCES and FURTHER READING

[1] Isaac, David and Christopher Lynnes, January, 2003. Automated Data Quality Assessment in the Intelligent Archive, White Paper prepared for the Intelligent Data Understanding program.
[2] Lynnes, Christopher and Gregory Leptoukh. Personal communication with the author. March 2, 2007.
[3] Berti-Équille, Laure. 2007. Quality-Aware Data Management and Mining. Institut National de Recherche en Informatique et en Automatique. http://www.inria.fr/rapportsactivite/RA2005/texmex/uid74.html.
[4] Olson, Jack. 2002. Data Quality: The Accuracy Dimension. Morgan Kaufmann.

PAGE

